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SYNTHESIS OF FUbXTIONALIZED TETRAHYDROFURANSl 

J. Edward Semple, Anne E. Guthrie and Madeleine M. Joulli&* 

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 

In connection with our studies directed towards the total synthesis of ascofuranone (L), an 

antibiotic and hypolipidemic agent, 
2-6 

as well as the natural product bullatenone (2) and musca- 

rine analogs (3 and A), we wish to describe a new method for the rapid and efficient construction 

of 3(2H)-dihydrofuranone ethylene ketals which possess manipulable functionality at C-5. Upon 

treatment with ethylene glycol and p-toluenesulfonic acid in refluxing benzene solution, readily 

accessible aldol condensation products such as 2, 16 or 17 afford high yields of the correspond- - _- 

ing ketals which can be converted into a diverse array of tetrahydrofuranoid natural products 

and analogs, 

Aldol condensation of 3-hydroxy-3-methyl-2-butanone (5)with c+methylcinnamaldehyde (5) 

(NaOEt, EtOH, O'C) gave cc'-hydroxydienone 1 in 89% yield."8 Treatment of 1 under the cycliza- 

tion conditions described above produced ketalz in 88% yield. We attribute the success of this 

cyclization to the formation of an extensively delocalized carbonium ion intermediate 8, which 

can be intercepted in a geometrically favorable manner 
9a-c,lO 

by the proximate hydroxyl 

function. Czonolysis of P_ (MeOH, -78'C) gave ketone 10 in 97% yield. The ketone was then - 

coupled with the appropriate ylid as described. The reaction of isopropenylmagnesium bromide 

with phenylacetaldehyde produced allylic alcohol li which was directly transformed into - 

(E)-olefinic ester 12 by the "ortho-acetate" Claisen rearrangement 
11,lZ . 

in 37% overall yield. 
13 

Reduction of the ester (LiAlH4, 99% yield), conversion of the corresponding alcohol to the 

bromide (CBr4, 03P, 92% yield),14 followed by reaction of the bromide with triphenyl phosphine 

afforded pnosp‘nonium salt 13 which was utilized in the following Wittig reaction. - Coupling of 

fragments 10 and 13 was achieved using potassium tert-amylate in refluxing benzene as the 

crucial base-solvent system. The choice of this system was based on the remarkable observa- 

tion that reaction of "unstabilized" ylids derived from primary phosphonium salts with 

pregnenolone gave products exclusively possessing the (E)-olefin geometry. 
15-17 

Condensation 

of 10 and 13 under these conditions afforded olefin 14 in 54% yield. 
18 

-- - Finally, deblocking 

of 14 produced the ascofuranone model 15 
19 

- _* 
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Hydroxyenones 16 and 17 -_ ~~, required in the synthesis of bullatenone and muscarine analogs, 

were obtained by the aldol condensation of 2 with benzaldehyde and trans-cinnamaldehyde 2o in 

76% and 71% yields, respectively. Treatment of 16 and 17 under our cyclization conditions - 

afforded ketals 18 
21 

and 19 
22 

in excellent yields. It should be noted that normal acid- - - 

catalyzed cyclization procedures gave disappointingly low yields (ca. 30%). Deblocking of 

ketal 18 afforded a known furanone 
10,23 

in 98% yield. This compound was then dehydrogenated - 

(DDQ, toluene) to produce bullatenone 2 in 97% yield. The overall yield from 2 to 2 was 732, 

the highest reported to date for the synthesis of this interesting substance. 
10,24-27 

Ketal 19 - 

was deblocked, reduced (NaBH4, EtOH), and acetylated (Ac20, pyr. DMAP) to give acetate 20 as a - 

mixture (ca. 1:l) of cis and trans isomers. _- Ozonolysis of 20 followed by Jones oxidation - 

afforded 21 (80% yield) which was converted to amide 22 (ca. 1:l mixture of cis and trans - - 

isomers). Reduction of the individual isomers followed by quatemization of the corresponding 

amines gave 2-methylepimuscarine iodide (2) and 2-methylmuscarine iodide (A) respectively, in 

88-93% overall yields. 
28 

Phase-transfer catalyzed oxidation 
29 

of ketal 19 gave carboxylic acid - 

23 which was converted via its mixed anhydride into amide 24. Reduction, ketal deblocking, and - 

quatemization of the resultant amine afforded 2-methylmuscarone iodide (25). 
30 

- 
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